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Abstract: In this paper, based on Riemann-Stieltjes integral, we study a new type of derivative. Some important 
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I.   INTRODUCTION 

The Riemann-Stieltjes integral, as a generalization of the Riemann integral, provides a more flexible integral method that 

makes the integral calculation more direct and convenient for specific types of functions. It has a wide range of applications 

in mathematical analysis, physics, financial mathematics, and economics, providing powerful tools for solving practical 

problems. With the development of mathematical analysis, research on the Riemann-Stieltjes integral remains active in the 

mathematical community, with new properties and applications continuously being discovered. 

Based on the Riemann-Stieltjes integral, this paper studies a new type of derivative [1] and proves some important properties 

of this new type of derivative, such as derivative of inverse function, first derivative test, second derivative test, test of 

concavity, and L'Hôpital's rule. In fact, our results are generalizations of the results in traditional differential calculus. The 

theory of Riemann-Stieltjes integral can be referred to [2-3]. For books on calculus theory, we can refer to [4-5].     

II.   PRELIMINARIES 

At first, we review the definition of Riemann-Stieltjes integral. 

Definition 2.1 ([1]): Let 𝑓, 𝑔: [𝑎, 𝑏] → 𝑅. If the limit 

                                                                                 lim
‖∆‖→0

∑ 𝑓(𝜉𝑘)[𝑔(𝑥𝑘) − 𝑔(𝑥𝑘−1)]𝑚
𝑘=1   

exists, where ∆= {𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑚 = 𝑏} is a partition of the interval [𝑎, 𝑏], 𝜉𝑘 ∈ [𝑥𝑘−1, 𝑥𝑘],  ∆𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1, and 

‖∆‖ = max
𝑘=1,⋯,𝑚

{∆𝑥𝑘}. Then it is called the Riemann-Stieltjes integral of 𝑓 with respect to 𝑔 over [𝑎, 𝑏]. We denote that 

                                            lim
‖∆‖→0

∑ 𝑓(𝜉𝑘)𝑚
𝑘=1 (𝑔(𝑥𝑘) − 𝑔(𝑥𝑘−1)) = ∫ 𝑓

𝑏

𝑎
(𝑥)𝑑𝑔(𝑥) = ∫ 𝑓

𝑏

𝑎
𝑑𝑔,                                    (1)   

and denote that 𝑓 ∈ 𝑅(𝑔, [𝑎, 𝑏]). In particular, if (𝑥) = 𝑥 , then ∫ 𝑓
𝑏

𝑎
𝑑𝑔 =  ∫ 𝑓

𝑏

𝑎
𝑑x , which is the Riemann integral of 𝑓  

on [𝑎, 𝑏]. 

Next, we present a new definition of derivative based on Riemann-Stieltjes integral. 

Definition 2.2 ([1]): Let 𝑥0 ∈ (𝑎, 𝑏) and 𝑓(𝑥), 𝑔(𝑥) be functions defined on (𝑎, 𝑏). If the limit 

                                                                                                   lim
𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
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exists, then we say that 𝑓 is differentiable with respect to 𝑔 at 𝑥0. If 𝑓(𝑥) are differentiable with respect to 𝑔 at all 𝑥 ∈ (𝑎, 𝑏), 

then 𝑓 is said to be differentiable with respect to 𝑔 on (𝑎, 𝑏), and denoted by 𝑓 ∈ 𝐷(𝑔, (𝑎, 𝑏)). In addition, the derivative 

of 𝑓(𝑥) with respect to 𝑔 at 𝑥0 is denoted by 

                                                                          𝑓𝑔 ’(𝑥0) =
𝑑

𝑑𝑔(𝑥)
𝑓(𝑥)|

𝑥=𝑥0

=  lim
𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
 .                                            (2)       

If 𝑔(𝑥) = 𝑥, then 𝑓𝑔 ’(𝑥0) = 𝑓’(𝑥0), which is  the usual derivative of 𝑓(𝑥) at  𝑥0. Moreover, for any positive integer 𝑛, we 

define  

                                                        𝑓𝑔
(𝑛)

(𝑥0) =
𝑑𝑛

𝑑𝑔(𝑥)𝑛 𝑓(𝑥)|
𝑥=𝑥0

= (
𝑑

𝑑𝑔(𝑥)
) (

𝑑

𝑑𝑔(𝑥)
) ∙∙∙ (

𝑑

𝑑𝑔(𝑥)
) 𝑓(𝑥)|

𝑥=𝑥0

  ,                           (3) 

the 𝑛-th order derivative of 𝑓(𝑥) with respect to 𝑔 at 𝑥0.  

Definition 2.3: For any 𝑥1, 𝑥2 ∈ [𝑎, 𝑏], 𝑥1 < 𝑥2. If 𝑓(𝑥1) ≤ 𝑓(𝑥2), then we say that 𝑓 is monotone increasing on [𝑎, 𝑏]. If 

𝑓(𝑥1) ≥ 𝑓(𝑥2), then 𝑓 is monotone decreasing on [𝑎, 𝑏]. In addition, if 𝑓(𝑥1) < 𝑓(𝑥2), then 𝑓 is strictly increasing on 

[𝑎, 𝑏]. If 𝑓(𝑥1) > 𝑓(𝑥2), then 𝑓 is strictly decreasing on [𝑎, 𝑏].  

Theorem 2.4 (Mean Value Theorem for Integrals) ([1]): If 𝑔  is a monotone increasing function on [𝑎, 𝑏], 𝑓 is a 

continuous function on [𝑎, 𝑏], then there is 𝑐 ∈ [𝑎, 𝑏] such that  

                                                                                 ∫ 𝑓
𝑏

𝑎
(𝑥)𝑑𝑔(𝑥) = 𝑓(𝑐)[𝑔(𝑏) − 𝑔(𝑎)].                                                    (4) 

Proposition 2.5: Let 𝑘, 𝐶 be real numbers, If 𝑓, 𝑔, ℎ: [𝑎, 𝑏] → 𝑅 and 𝑓, ℎ are differentiable with respect to 𝑔 at 𝑥0 ∈ (𝑎, 𝑏), 

then  

                                                                             (𝑓 + ℎ)𝑔’(𝑥0) = 𝑓𝑔 ’(𝑥0) + ℎ𝑔 ’(𝑥0),                                                         (5) 

                                                                             (𝑓 − ℎ)𝑔’(𝑥0) = 𝑓𝑔 ’(𝑥0) − ℎ𝑔 ’(𝑥0),                                                         (6) 

                                                                             (𝑘𝑓)𝑔 ’(𝑥0) = 𝑘𝑓𝑔 ’(𝑥0),                                                                            (7) 

                                                                                              (𝐶)𝑔 ’ = 0.                                                                                    (8) 

Theorem 2.6: If  𝑔 is continuous at 𝑥0, and 𝑓 is differentiable with respect to 𝑔 at 𝑥0 , then 𝑓 is continuous at 𝑥0. 

Theorem 2.7 (Product Rule) ([1]): If 𝑔 is continuous at 𝑥0, 𝑎𝑛𝑑 𝑓, ℎ are differentiable with respect to 𝑔 at 𝑥0, then 𝑓 ∙ ℎ 

is differentiable with respect to 𝑔 at  𝑥0 , and 

                                                                            (𝑓 ∙ ℎ)𝑔’(𝑥0) = 𝑓𝑔 ’(𝑥0) ∙ ℎ(𝑥0) + 𝑓(𝑥0) ∙ ℎ𝑔 ’(𝑥0).                                   (9) 

Remark 2.8: In Theorem 2.7, it is easy to see that the condition ' 𝑔 is continuous at 𝑥0′ can be replaced by 'function 𝑓 or ℎ 

is continuous at 𝑥0′ . 

Theorem 2.9 (Quotient Rule) ([1]): If function ℎ is continuous at 𝑥0, ℎ(𝑥0) ≠ 0, 𝑎𝑛𝑑 𝑓, ℎ are differentiable with respect 

to 𝑔 at 𝑥0, then 
𝑓

ℎ
 differentiable with respect to 𝑔 at 

𝑓(𝑥0)

ℎ(𝑥0)
 , and 

                                                                            (
𝑓

ℎ
)

𝑔
’(𝑥0) =

𝑓𝑔 ’(𝑥0)∙ℎ(𝑥0)−𝑓(𝑥0)∙ℎ𝑔 ’(𝑥0)

ℎ2(𝑥0)
.                                                         (10) 

Theorem 2.10 (Leibniz Rule) ([1]): If p is a positive integer, function 𝑔  is continuous at  𝑥0, 𝑎𝑛𝑑  𝑓, ℎ  are 𝑝 times 

differentiable with respect to 𝑔 at 𝑥0, then  

                                                                 (𝑓 ∙ ℎ)𝑔
(𝑝)

(𝑥0) = ∑ (
𝑝
𝑘

)
𝑝
𝑘=0 𝑓𝑔

(𝑘)(𝑥0) ∙ ℎ𝑔
(𝑝−𝑘)(𝑥0),                                             (11) 

where (
𝑝
𝑘

) =
𝑝!

𝑘!(𝑝−𝑘)!
 . 

Theorem 2.11 (Chain Rule) ([1]): If the function ℎ is continuous at 𝑥0, ℎ is differentiable with respect to 𝑔 at 𝑥0, and 𝑓 is 

differentiable at ℎ(𝑥0), then the composite function 𝑓 ∘ ℎ is differentiable with respect to 𝑔 at 𝑥0, and 

                                                                            (𝑓 ∘ ℎ)𝑔’(𝑥0) = 𝑓 ’(ℎ(𝑥0)) ∙ ℎ𝑔 ’(𝑥0).                                                      (12) 
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Remark 2.12: In Theorem 2.11, the condition ' ℎ is continuous at 𝑥0′ can be replaced by '𝑔 is continuous at 𝑥0′.    

Theorem 2.13 (Mean Value Theorem for Derivatives) ([1]): Let 𝑔 be a strictly increasing function on [𝑎, 𝑏]. If 𝑓 is 

continuous on closed interval [𝑎, 𝑏] and differentiable with respect to 𝑔 on open interval (𝑎, 𝑏), then there exists  𝜉 ∈ (𝑎, 𝑏) 

such that  

                                                                                     𝑓(𝑏) − 𝑓(𝑎) = 𝑓𝑔 ’(𝜉)[𝑔(𝑏) − 𝑔(𝑎)].                                               (13) 

Theorem 2.14 (Cauchy’s Mean Value Theorem)([1]): Assume that 𝑔 is a strictly increasing function on [𝑎, 𝑏]. If 𝑓, ℎ are 

continuous on [𝑎, 𝑏] and differentiable with respect to 𝑔 on (𝑎, 𝑏), ℎ(𝑏) ≠ ℎ(𝑎), and ℎ𝑔 ’(𝑥) ≠ 0 for all 𝑥 ∈ (𝑎, 𝑏). Then 

there is  𝜉 ∈ (𝑎, 𝑏) such that  

                                                                                          
𝑓(𝑏)−𝑓(𝑎)

ℎ(𝑏)−ℎ(𝑎)
=

𝑓𝑔 ’(𝜉)

ℎ𝑔 ’(𝜉)
.                                                                        (14)       

Theorem 2.15 (Fundamental Theorem of Calculus) ([1]): If 𝑔  is a strictly increasing function on [𝑎, 𝑏] , and 𝑓  is 

continuous on [𝑎, 𝑏], then 

(I) 𝐺(𝑥) = ∫ 𝑓
𝑥

𝑎
(𝑥)𝑑𝑔(𝑥) is differentiable with respect to 𝑔 on (𝑎, 𝑏), and 

                                                                          𝐺𝑔 ’(𝑥) =
𝑑

𝑑𝑔(𝑥)
∫ 𝑓

𝑥

𝑎
(𝑥)𝑑𝑔(𝑥) = 𝑓(𝑥)                                                     (15) 

for all 𝑥 ∈ (𝑎, 𝑏). 

(II) If 𝐹(𝑥) is continuous on [𝑎, 𝑏] and differentiable with respect to 𝑔 on (𝑎, 𝑏) with 𝐹𝑔 ’(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ (𝑎, 𝑏), 

then 

                                                                           ∫ 𝑓
𝑏

𝑎
(𝑥)𝑑𝑔(𝑥) = 𝐹(𝑏) − 𝐹(𝑎).                                                              (16) 

III.   MAIN RESULTS 

In this section, we prove some important properties of this new type of derivative. 

Theorem 3.1 (Derivative of Inverse Function): Suppose that function 𝑔 is differentiable at 𝑥0 with 𝑔 ’(𝑥0) ≠ 0, and 𝑓 

is an invertible function with the inverse 𝑓−1.  If 𝑓 is differentiable at 𝑓−1(𝑥0)  with 𝑓 ’(𝑓−1(𝑥0)) ≠ 0, and if 𝑓−1  is 

continuous at 𝑥0, and differentiable with respect to 𝑔 at 𝑥0, then 𝑓−1 is differentiable with respect to 𝑔 at 𝑥0, and 

                                                                                     𝑓−1
𝑔

’(𝑥0) =
1

𝑓 ’(𝑓−1(𝑥0))∙𝑔 ’(𝑥0)
 .                                                      (17) 

Proof  Since 𝑓(𝑓−1(𝑥)) = 𝑥, it follows from chain rule that 

                                                                              𝑓 ’(𝑓−1(𝑥)) ∙ 𝑓−1
𝑔

’(𝑥) =
1

𝑔 ’(𝑥)
 .                                                        (18) 

Thus,  

                                                                                   𝑓−1
𝑔

’(𝑥0) =
1

𝑓 ’(𝑓−1(𝑥0))∙𝑔 ’(𝑥0)
 .                                             q.e.d. 

Theorem 3.2: Assume that 𝑔 is a strictly increasing function on [𝑎, 𝑏], and if 𝑓 is continuous on [𝑎, 𝑏] and differentiable 

with respect to 𝑔 on open interval (𝑎, 𝑏). 

(I)  If  𝑓𝑔 ’(𝑥) > 0  for all  𝑥 ∈ (𝑎, 𝑏), then 𝑓 is strictly increasing on [𝑎, 𝑏]. 

(II) If  𝑓𝑔 ’(𝑥) < 0  for all  𝑥 ∈ (𝑎, 𝑏), then 𝑓 is strictly decreasing on [𝑎, 𝑏]. 

Proof  (I) If 𝑥1, 𝑥2 ∈ (𝑎, 𝑏) and 𝑥1 < 𝑥2, then by mean value theorem for derivatives, there exists 𝜉 ∈ (𝑎, 𝑏) such that 

                                                                           𝑓(𝑥2) − 𝑓(𝑥1) = 𝑓𝑔 ’(𝜉)[𝑔(𝑥2) − 𝑔(𝑥1)].                                            (19) 

Since 𝑓𝑔 ’(𝜉) > 0 and 𝑔(𝑥2) − 𝑔(𝑥1) > 0, it follows that 𝑓(𝑥1) < 𝑓(𝑥2). Therefore, 𝑓 is strictly increasing on (𝑎, 𝑏). By 

the similar proof, we can obtain part (II) of this theorem.                                                            q.e.d. 
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Theorem 3.3 (First Derivative Test): Suppose that 𝑥0 ∈ (𝑎, 𝑏), and 𝑔 is a strictly increasing function on [𝑎, 𝑏]. If 𝑓 is 

continuous on [𝑎, 𝑏] and differentiable with respect to 𝑔 on (𝑎, 𝑏). 

(I) If  𝑓𝑔 ’(𝑥)  changes from positive to negative at 𝑥0, then 𝑓(𝑥0) is a local maximum of 𝑓. 

(II) If  𝑓𝑔 ’(𝑥)  changes from negative to positive at 𝑥0, then 𝑓(𝑥0) is a local minimum of 𝑓. 

Proof  (I) Since 𝑓𝑔 ’(𝑥)  changes from positive to negative at 𝑥0, there exists 𝑎, 𝑏, 𝑎 < 𝑏 such that 𝑓𝑔 ’(𝑥) > 0 for all 𝑥 ∈

(𝑎, 𝑥0) and 𝑓𝑔 ’(𝑥) < 0 for all 𝑥 ∈ (𝑥0, 𝑏). By Theorem 3.2, 𝑓 is strictly increasing on [𝑎, 𝑥0] and strictly decreasing on 

[𝑥0, 𝑏]. Thus,  𝑓(𝑥0) is a local maximum of 𝑓. Using the similar proof,  we obtain part (II) of this theorem.        q.e.d. 

Theorem 3.4 (Second Derivative Test): Let 𝑥0 ∈ (𝑎, 𝑏), and 𝑔 be a strictly increasing function on [𝑎, 𝑏]. If 𝑓 is continuous 

on [𝑎, 𝑏] and twice differentiable with respect to 𝑔 on (𝑎, 𝑏), and if 𝑓𝑔 ’(𝑥0) = 0. 

(I) If  𝑓𝑔 ’’(𝑥0) > 0, then 𝑓(𝑥0) is a local  minimum of 𝑓. 

(II) If  𝑓𝑔 ’’(𝑥0) < 0, then 𝑓(𝑥0) is a local  maximum of 𝑓. 

Proof  (I) Since  𝑓𝑔 ’’(𝑥0) = lim
𝑥→𝑥0

𝑓𝑔 ’(𝑥)−𝑓𝑔 ’(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
= lim

𝑥→𝑥0

𝑓𝑔 ’(𝑥)

𝑔(𝑥)−𝑔(𝑥0)
> 0 , it follows that there is an open interval 𝐼 

containing 𝑥0 for which 
𝑓𝑔 ’(𝑥)

𝑔(𝑥)−𝑔(𝑥0)
> 0 for all 𝑥 ≠ 𝑥0 in 𝐼. If 𝑥 < 𝑥0, then 𝑔(𝑥) − 𝑔(𝑥0) < 0, and hence 𝑓𝑔 ’(𝑥) < 0. Also, 

if 𝑥 > 𝑥0, then 𝑔(𝑥) − 𝑔(𝑥0) > 0 and hence 𝑓𝑔 ’(𝑥) > 0. So, 𝑓𝑔 ’(𝑥) changes from negative to positive at 𝑥0, and the first 

derivative test implies that 𝑓(𝑥0) is a local  minimum of 𝑓. Using the similar proof, we obtain part (II) of this theorem.         

q.e.d.  

Definition 3.5 (Concavity): Let 𝑔 be a strictly increasing and continuous function on [𝑎, 𝑏], and 𝑓  be continuous on 

[𝑎, 𝑏] and differentiable with respect to 𝑔 on (𝑎, 𝑏). If  𝑓𝑔 ’ is strictly increasing on (𝑎, 𝑏), then we say that 𝑓 is concave 

upward with respect to 𝑔 on (𝑎, 𝑏). If  𝑓𝑔 ’ is strictly decreasing on (𝑎, 𝑏), then  𝑓 is concave downward with respect to 𝑔 

on (𝑎, 𝑏). 

Theorem 3.6 (Test for Concavity): Suppose that 𝑔 is a strictly increasing and continuous function on [𝑎, 𝑏]. If 𝑓  is 

continuous on [𝑎, 𝑏] and twice differentiable with respect to 𝑔 on (𝑎, 𝑏). 

(I) If  𝑓𝑔 ’’(𝑥) > 0 for all  𝑥 ∈ (𝑎, 𝑏), then 𝑓 is concave upward with respect to 𝑔 on (𝑎, 𝑏). 

(II) If  𝑓𝑔 ’’(𝑥) < 0 for all  𝑥 ∈ (𝑎, 𝑏), then 𝑓 is concave downward with respect to 𝑔 on (𝑎, 𝑏). 

Proof  (I) For any 𝑥1, 𝑥2 ∈ (𝑎, 𝑏) and 𝑥1 < 𝑥2, by mean value theorem for derivatives, there is 𝜉 ∈ (𝑥1, 𝑥2) such that 

                                                                    𝑓𝑔 ’(𝑥2) − 𝑓𝑔 ’(𝑥1) =  𝑓𝑔 ’’(𝜉)[𝑔(𝑥2) − 𝑔(𝑥1)].                                              (20) 

Since 𝑔 is strictly increasing on [𝑎, 𝑏] and 𝑓𝑔 ’’(𝜉) > 0, it follows that 𝑓𝑔 ’(𝑥1) < 𝑓𝑔 ’(𝑥2). By definition of concavity,  𝑓 is 

concave upward with respect to 𝑔 on (𝑎, 𝑏). The similar proof can obtain part (II) of this theorem.          q.e.d.                                     

Theorem 3.7: If 𝑔 is strictly increasing on [𝑎, 𝑏], 𝑓 is continuous on [𝑎, 𝑏], and 𝑢(𝑥), 𝑣(𝑥) are continuous on [𝑎, 𝑏] and 

differentiable with respect to 𝑔 on (𝑎, 𝑏).  Then 𝐻(𝑥) = ∫ 𝑓
𝑣(𝑥)

𝑢(𝑥)
(𝑥)𝑑𝑔(𝑥) is differentiable with respect to 𝑔 on (𝑎, 𝑏), and 

                                                  𝐻𝑔 ’(𝑥) =
𝑑

𝑑𝑔(𝑥)
∫ 𝑓

𝑣(𝑥)

𝑢(𝑥)
(𝑥)𝑑𝑔(𝑥) = 𝑓(𝑣(𝑥)) ∙ 𝑣𝑔 ’(𝑥) − 𝑓(𝑢(𝑥)) ∙ 𝑢𝑔 ’(𝑥)                     (21) 

for all  𝑥 ∈ (𝑎, 𝑏). 

Proof  Let 𝐾(𝑥) = ∫ 𝑓
𝑥

𝑎
(𝑥)𝑑𝑔(𝑥), then 

                  𝐻(𝑥) = ∫ 𝑓
𝑣(𝑥)

𝑢(𝑥)
(𝑥)𝑑𝑔(𝑥) = − ∫ 𝑓

𝑢(𝑥)

𝑎
(𝑥)𝑑𝑔(𝑥) + ∫ 𝑓

𝑣(𝑥)

𝑎
(𝑥)𝑑𝑔(𝑥) = 𝐾(𝑣(𝑥)) − 𝐾(𝑢(𝑥)) .                   (22)  

By chain rule and fundamental theorem of calculus, we have 

                       𝐻𝑔 ’(𝑥) = 𝐾’(𝑣(𝑥)) ∙ 𝑣𝑔 ’(𝑥) − 𝐾’(𝑢(𝑥)) ∙ 𝑢𝑔 ’(𝑥) = 𝑓(𝑣(𝑥)) ∙ 𝑣𝑔 ’(𝑥) − 𝑓(𝑢(𝑥)) ∙ 𝑢𝑔 ’(𝑥).       q.e.d. 
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Theorem 3.8 (L'Hôpital's Rule): Let 𝑥0 ∈ (𝑎, 𝑏) and 𝑔 be a strictly increasing function on [𝑎, 𝑏]. Suppose that 𝑓, ℎ are 

continuous on [𝑎, 𝑏], and differentiable with respect to 𝑔 on (𝑎, 𝑏). If lim
𝑥→𝑥0

𝑓(𝑥) = 0, lim
𝑥→𝑥0

ℎ(𝑥) = 0, and that lim
𝑥→𝑥0

𝑓𝑔 ’(𝑥)

ℎ𝑔 ’(𝑥)
  

exists. Then 

                                                                                     lim
𝑥→𝑥0

𝑓(𝑥)

ℎ(𝑥)
 = lim

𝑥→𝑥0

𝑓𝑔 ’(𝑥)

ℎ𝑔 ’(𝑥)
 .                                                                         (23) 

Proof  Since lim
𝑥→𝑥0

𝑓𝑔 ’(𝑥)

ℎ𝑔 ’(𝑥)
 exists, there is an interval 𝐼 around 𝑥0 (perhaps excluding 𝑥0) where 𝑓𝑔 ’(𝑥) and ℎ𝑔 ’(𝑥) exist and 

 ℎ𝑔 ’(𝑥) ≠ 0. Define two new functions 𝐹  and 𝐻  that agree with 𝑓 and ℎ  for 𝑥 ≠ 𝑥0 , and set 𝐹(𝑥0) = 𝐻(𝑥0) = 0. By 

Cauchy’s mean value theorem applied to 𝐹 and 𝐻, there is a point 𝜉 between 𝑥0 and 𝑥 such that 

                                                                              
𝑓(𝑥)

ℎ(𝑥)
=

𝐹(𝑥)

𝐻(𝑥)
=

𝐹(𝑥)−𝐹(𝑥0)

𝐻(𝑥)−𝐻(𝑥0)
=

𝐹𝑔 ’( 𝜉)

𝐻𝑔 ’( 𝜉)
=

𝑓𝑔 ’( 𝜉)

ℎ𝑔 ’( 𝜉)
 .                                            (24) 

Since 𝜉 between 𝑥0 and 𝑥 and lim
𝑥→𝑥0

𝑓𝑔 ’(𝑥)

ℎ𝑔 ’(𝑥)
 exists, it follows that 

                                                                               lim
𝑥→𝑥0

𝑓𝑔 ’(𝑥)

ℎ𝑔 ’(𝑥)
= lim

𝑥→𝑥0

𝑓𝑔 ’( 𝜉)

ℎ𝑔 ’( 𝜉)
= lim

𝑥→𝑥0

𝑓(𝑥)

ℎ(𝑥)
 .                                 q.e.d. 

IV.   CONCLUSION 

In this paper, we prove some important properties of a new type of derivative, including derivative of inverse function, first 

derivative test, second derivative test, test of concavity, and L'Hôpital's rule. In fact, our results are generalizations of 

ordinary differential calculus results. In the future, we will continue to use this new type of derivative to solve the problems 

in engineering mathematics and ordinary differential equations. 
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